国产一区二区三区乱码福利_久久久久无码专区亚洲AV_日本在线高清不卡一区二区_免费va国产欧美一区高清大片

學(xué)術(shù)預(yù)告 首頁(yè)  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇:Stability and error estimation based on a difference-spectral approximation for Cahn-Hilliard equation in complex domains
作者:     供圖:     供圖:     日期:2025-05-06     來(lái)源:    

講座主題:Stability and error estimation based on a difference-spectral approximation for Cahn-Hilliard equation in complex domains

專家姓名:安靜

工作單位:貴州師范大學(xué)

講座時(shí)間:2025年05月07日14:00-15:00

講座地點(diǎn):數(shù)學(xué)院大會(huì)議室341

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

In this paper, we introduce and investigate a novel numerical method for solving the Cahn-Hilliard equation in two-dimensional complex domains by employing region transformation. Initially, we convert the fourth-order equation into a second-order coupled system and formulate its first- and second-order semi-implicit schemes. Afterwards, we transform them into the polar coordinates equivalents. By introducing a category of weighted Sobolev spaces, we elaborate on fully discrete schemes and offer a theoretical validation of their stability. In particular, the introduction of pole singularities and the nonlinearity of the coupling problem pose significant challenges to theoretical analysis. To address these challenges, we introduce a novel class of projection operators and establish their approximation properties. Leveraging these properties, we provide error estimates for the approximate solutions. To validate our theoretical insights and algorithm's efficacy, we conclude with a series of numerical examples.

主講人介紹:

安靜,貴州師范大學(xué)教授,博士生導(dǎo)師,主持完成國(guó)家自然科學(xué)基金項(xiàng)目3項(xiàng),在研國(guó)家自然科學(xué)基金項(xiàng)目1項(xiàng),在SIAM J NUMER ANAL、J SCI COMPUT、APPL NUMER MATH等期刊發(fā)表SCI學(xué)術(shù)論文30余篇。

仁化县| 炉霍县| 类乌齐县| 孟村| 平乡县| 揭阳市| 南安市| 泰和县| 石渠县| 昌乐县| 江达县| 安庆市| 东乡族自治县| 广河县| 昭觉县| 冷水江市| 封丘县| 河北区| 西乌珠穆沁旗| 泰顺县| 绥滨县| 隆回县| 尉犁县| 阿合奇县| 仙桃市| 淮滨县| 宜川县| 商洛市| 贵南县| 江都市| 长泰县| 奉贤区| 抚顺县| 肇东市| 溧阳市| 汪清县| 五台县| 奉化市| 嘉义县| 宜州市| 新津县|